Research Publications Archive - Foundation for Prader-Willi Research | Therapeutic Development

Chronic diazoxide treatment decreases fat mass and improves endurance capacity in an obese mouse model of Prader-Willi syndrome

Excess fat mass is a cardinal feature of Prader-Willi syndrome (PWS) that is recapitulated in the Magel2-null mouse model of this genetic disorder. There is a pressing need for drugs that can prevent or treat obesity in children with PWS. Recently, a clinical study of a controlled release form of...

Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome

Abstract Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum...

Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

This publication was highlighted in an FPWR Research Blog post "Promising First Steps Towards Genetic Therapy for Prader-Willi Syndrome" (December 2016)

Dysfunctional oleoylethanolamide signaling in a mouse model of Prader-Willi syndrome

Prader-Willi syndrome (PWS), the leading genetic cause of obesity, is characterized by a striking hyperphagic behavior that can lead to obesity, type-2 diabetes, cardiovascular disease and death. The molecular mechanism underlying impaired satiety in PWS is unknown. Oleoylethanolamide (OEA) is a...

Targeting the endocannabinoid/CB1 receptor system for treating obesity in Prader-Willi syndrome

OBJECTIVE: Extreme obesity is a core phenotypic feature of Prader-Willi syndrome (PWS). Among numerous metabolic regulators, the endocannabinoid (eCB) system is critically involved in controlling feeding, body weight, and energy metabolism, and a globally acting cannabinoid-1 receptor (CB1R)...

Progress in Small Molecule and Biologic Therapeutics Targeting Ghrelin Signaling

Ghrelin is a circulating peptide hormone involved in regulation of a wide array of physiological processes. As an endogenous ligand for growth hormone secretagogue receptor (GHS-R1a), ghrelin is responsible for signaling involved in energy homeostasis, including appetite stimulation, glucose...

Novel Regulator of Acylated Ghrelin, CF801, Reduces Weight Gain, Rebound Feeding after a Fast, and Adiposity in Mice

Ghrelin is a 28 amino acid hormonal peptide that is intimately related to the regulation of food intake and body weight. Once secreted, ghrelin binds to the growth hormone secretagogue receptor-1a, the only known receptor for ghrelin and is capable of activating a number of signaling cascades,...

A new class of ghrelin O-acyltransferase inhibitors incorporating triazole-linked lipid mimetic groups

Inhibitors of ghrelin O-acyltransferase (GOAT) have untapped potential as therapeutics targeting obesity and diabetes. We report the first examples of GOAT inhibitors incorporating a triazole linkage as a biostable isosteric replacement for the ester bond in ghrelin and amide bonds in previously...

Hyperphagia: Current concepts and future directions proceedings of the 2nd international conference on hyperphagia

Objective Hyperphagia is a central feature of inherited disorders (e.g., Prader–Willi Syndrome) in which obesity is a primary phenotypic component. Hyperphagia may also contribute to obesity as observed in the general population, thus raising the potential importance of common underlying mechanisms...

Structure-activity analysis of human ghrelin o-acyltransferase reveals chemical determinants of ghrelin selectivity and acyl group recognition

Ghrelin O-acyltransferase (GOAT) is an integral membrane acyltransferase responsible for catalyzing a serine-octanoylation posttranslational modification within the peptide hormone ghrelin. Ghrelin requires this octanoylation for its biological activity in stimulating appetite and in regulating...