Projects

Small molecule allosteric modulators of the melanocortin-4 receptor for the treatment of Prader-Willi syndrome

There is some data suggesting that one of the systems that regulates appetite and weight in the brain, the melanocortin-4 receptor pathway, may be disrupted in PWS.  This study will examine a new class of drugs targeting this pathway, in a mouse model of PWS.  The drugs will be tested alone and in combination with other drugs currently being false

Physiological and genetic determinants on hyperthermia and hyperphagia in PWS

Dr. Tucci’s group has shown that mice with the SNORD116 deletion have sleep abnormalities and increased body temperature. They hypothesize that environmental temperature may play a crucial role in the pathophysiology of PWS symptoms including sleep and obesity. They will use PWS mice that will be maintained under different temperature regimens and false

Wake promoting effects of oxytocin

Caregivers, physicians and patients with PWS report that daytime sleepiness in PWS significantly disrupts daily life. However, the underlying cause of excessive daytime sleepiness in PWS is unknown. Dr. Scammell’s group is exploring the contribution of reduced neuronal function in the hypothalamus region of the brain, specifically, oxytocin/orexin false

Recapitulating obesity and hyperphagia in novel adult-onset mouse models of Snord116 deletion

Although it is well established that deletion of SNORD116 contributes to PWS in humans, mice missing Snord116 don’t display hyperphagia and obesity. This makes it very difficult to study the biology of SNORD116 and test anti-obesity drugs. In a major breakthrough, Dr. Yeo’s group has shown that if Snord116 is deleted in adult mice, a percentage of false

Improving social functioning in Prader-Willi syndrome

People with intellectual or developmental disabilities, including Prader-Willi syndrome (PWS), are at heightened risk for social exclusion and isolation. This underpins loneliness, depression and anxiety, contributes to poor health and reduced longevity. This project will recruit 50 young adults with PWS into an intensive, 10-week group false

Understanding multiple hormone secretion deficits in Prader-Willi Syndrome

Numerous hormone levels are deficient in PWS. However, the underlying biology and how the altered hormone levels contribute to the characteristics of PWS is not well understood. Dr. Nicholls’ group has developed a novel cell culture model system to study how PWS genes regulate hormone production and release. This model system will advance our false

The molecular mechanism of SNORD116 action and possible SNORD116 substitution strategies

The loss of two snoRNAs, SNORD115 and SNORD116, plays a central role in the development of Prader-Willi syndrome. However, the normal function of SNORD116 is still unclear, making it difficult to understand what goes wrong when SNORD116 is lost. Dr. Stamm’s group is exploring how SNORD116 influences other genes, and their preliminary studies false

Ghrelin: Is it detrimental, beneficial, or inconsequential in Prader-Willi Syndrome? (year 2)

Ghrelin levels are elevated in PWS, but why, how, and whether it plays a role in hyperphagia or other aspects of PWS are all still unanswered questions. This project will explore if ghrelin plays a protective role in PWS with regards growth hormone deficiency, hypoglycemia and mental health issues, but a detrimental role with regards to extreme false

Search Projects

Donate for PWS Research