Projects Archive - Foundation for Prader-Willi Research | RNA

Under the guidance of our Scientific Advisory Board through a carefully managed grants process, FPWR selects research projects based on the collaborative input of researchers and parents, choosing projects that are both scientifically meritorious and highly relevant for individuals with PWS and their families.

Search Projects

Filter projects

Non-coding RNAs in neuronal differentiation and PWS

Funded Year: 2022

We expect that discovering the direct functions of snoRNAs will uncover new mechanisms – as well as revealing the fundamental basis of PWS. We propose to create a wide picture of RNA-RNA and RNA-protein interactions during the development of brain cells, focusing on interactions of SNORD116, as well as SNORD115 and other ncRNAs synthesized from...

Where and when does SNORD116 interact with its mRNA targets?

Funded Year: 2022

The Snord116 gene is critical in PWS, but its normal function is incompletely understood. Dr. Good will establish an atlas of where and when the SNORD116 RNA is expressed in the developing mouse brain and how it interacts with one of its putative target genes, Nhlh2, to gain insight into the underlying molecular basis of PWS.

Genomewide identification of mRNA sites of 2’-O methylation targeted by SNORD116 snoRNAs (Year 2)

Funded Year: 2021

In PWS, a cluster of small nucleolar RNAs (snoRNAs), the SNORD116 cluster, appears to be of critical importance, but the SNORD116 targets have yet to be identified. Dr. Carmichael and his team have engineered neurons that mimic naturally-occurring PWS deletions and are using them to look for alterations in gene expression and regulation. In year...

Long Non-Coding RNAs Transcribed From Prader-Willi syndrome Locus: Key Regulators of Gene Expression (Year 2)

Funded Year: 2021

Preliminary research done by Dr. Grzechnik has shown that “long non-coding RNAs”, (lncRNAs) from PWS-region genes may act as important regulators in neurodevelopment. In this project, Dr. Grzechnik will study the changes that occur when the PWS lncRNAs are depleted during the early, middle and late stages of neuronal development.

Long Non-Coding RNAs Transcribed From Prader-Willi syndrome Locus: Key Regulators of Gene Expression

Funded Year: 2020

Dr. Grzechnik’s lab is interested in uncovering the biological mechanisms underlying PWS. The deletion in the PWS locus affects the regulation of gene expression in neurons, but scientists are not exactly sure how this mechanism works. This current project is testing how coding and non-coding regions of the human genome are transcribed in cells...

donate to FPWR for PWS research