Under the guidance of our Scientific Advisory Board through a carefully managed grants process, FPWR selects research projects based on the collaborative input of researchers and parents, choosing projects that are both scientifically meritorious and highly relevant for individuals with PWS and their families.

Search Projects

Filter projects

Preclinical studies of a novel epigenetic therapy for Prader-Willi syndrome

Funded Year: 2016

Despite the significant progress in understanding the molecular basis underlying Prader-Willi syndrome, little advance has been achieved in developing the treatment specifically targeting to the molecular defect. The SNORD116 between the SNRPN and UBE3A genes is important for the major features of PWS. The host transcripts and SNORD116 in the...

Reactivation of the PWS locus via disruption of the ZNF274 silencing complex (year 2)

Funded Year: 2016

Through a normal biological process called genomic imprinting, the chromosome 15 that is inherited from the father has a set of genes that are switched on while the same set of genes on the chromosome 15 inherited from the mother are switched off. In Prader-Willi syndrome (PWS), there is no normal copy of the paternal chromosome 15 so patients...

The MAGEL2 phenotype in comparison to classic Prader-Willi syndrome

Funded Year: 2016

Prader-Willi syndrome (PWS) is a genetically and clinically complex disorder. From a molecular standpoint, a major question has been the contribution of individual genes within the Prader-Willi domain on chromosome 15 to the overall clinical phenotype. Many animal models have attempted to address this question, but have not been able to fully...

Loss of MAGEL2 and hypotonia in Prader-Willi syndrome

Funded Year: 2016

Children with PWS are hypotonic (floppy) at birth. Their poor muscle tone causes delays in sitting and walking and contributes to orthopedic problems such as scoliosis. Reduced endurance lowers the number of calories they can consume per day to manage their body weight, and impairs their quality of life. Treatments that build muscle mass or...

Mitochondrial Complex I dysfunction in Prader Willi Syndrome: A new therapeutic target

Funded Year: 2016

Children with Prader-Willi syndrome suffer from very low muscle tone, growth delay, short stature, developmental delay, muscle weakness and exercise intolerance. Studies have suggested that there is a problem with energy metabolism in PWS but what kind of problem this is and how this leads to PWS is not clear at the present time. Many PWS patients...

A post-mortem study of von Economo neurons in the frontal cortex of brains of persons with PWS

Funded Year: 2016

Although PWS is best known for hypothalamic obesity and hyperphagia, the cognitive and behavioral issues are the most challenging for families. Brain difference is the underpinning of the characteristics that define the Prader-Willi personality: food related behaviors, excessive/repetitive behaviors, stress sensitivity/mood disorder, cognitive...

Plastic TASTER: a switching training game for people with PWS that adapts to individual needs (year 2)

Funded Year: 2016

Task switching is a cognitive process important for regulating behaviour. People with PWS generally show impaired switching and this difficulty is linked to people resisting change and showing temper outbursts triggered by changes.

Predictors of psychosis in Prader Willi Syndrome

Funded Year: 2016

There is increasing evidence that Prader-Willi Syndrome is associated with high rates of psychosis, a serious mental disorder that profoundly disrupts thought and emotion. However, little is known about the early or ‘prodromal’ phase of illness and the risk factors that predict the emergence of psychosis in PWS patients. This is a critical gap in...

Oxytocin treatment in Magel2-defcient mice (year 2)

Funded Year: 2016

The MAGEL2 gene appears as one of the main genes involved in feeding and behavioral (autistic like behavior) alterations observed in Prader-Willi Syndrome. We showed that, in mouse, the deficiency of Magel2 results in a phenotype similar to the clinical description of patients with mutations in MAGEL2. Indeed, we showed that Magel2-deficient mice...

donate to FPWR for PWS research