Projects Archive - Foundation for Prader-Willi Research | Genetics and Imprinting

The molecular mechanism of SNORD116 action (year 2)

Abstract SNORD116 is a C/D box small nucleolar RNA that is critical for the etiology of PWS, as microdeletions encompassing only SNORD116 cause a PWS-like phenotype. The molecular functions of SNORD116 have been elusive, preventing therapy design. We showed that SNORD116 is not a typical snoRNA, as it associates with different proteins and has a false

A transcriptome-wide approach to identifying RNA targets of the Prader-Willi locus snoRNAs (year 2)

Abstract Prader-Willi syndrome (PWS) traits are genetically determined by the loss of expression of genes from the paternally inherited small region located on chromosome 15. These genes are transcribed to brain-specific small nucleolar RNAs (snoRNAs) whose function is still unknown. snoRNAs were traditionally assigned a role in ribosomal RNA false

Consequences of targeted SNORD116 deletion in human and mouse neurons

Abstract The role of the brain in controlling food intake is increasingly apparent, with studies finding that genes related to obesity often play a role in brain regions crucial for feeding, appetite, and satiety. Prader-Willi syndrome, one of the most common forms of genetic obesity, results increased food intake (hyperphagia) leading to severe false

CRISPR-mediated 3D modeling, molecular dissection and epigenetic profiling of PWS

Deletions on chromosome 15 in the bands labeled 15q11.2-q13 on the chromosome inherited from a subject’s father cause Prader-Willi syndrome (PWS). The unique nature of this causative genetic event has been known for many years, but the precise manner in which it causes the developmental abnormalities of PWS is not completely understood since the false

The SNORD116-NHLH2 pathway: insights into the molecular genetic basis of Prader-Willi Syndrome

Prader-Willi Syndrome (PWS) is a genetic condition resulting from paternal inheritance of a deletion within an imprinted region of chromosome 15q. The smallest known deleted region encompasses a small nucleolar non-coding RNA locus called SNORD116 (SNORD116), but very little is known about how deletion of SNORD116 leads to PWS. As shown using false

Evaluating factors that may affect the efficacy of intranasal oxytocin treatment in PWS

Recent studies with oxytocin treatment in PWS have yielded inconsistent results. Intranasal administration of oxytocin by the Toulouse group decreased disruptive behaviors in patients with PWS, but a recent randomized trial in Australia of adolescents and adults of intranasal oxytocin (IN-OT) found no effect on syndrome-specific behavior in false

Gene Expression Analysis in PWS Subject Derived Dental Pulp Stem Cell Neurons (year 2)

There are two goals to this study: 1) To identify differences between individuals with PWS with autism from those who have PWS without autism using technology that analyzes how genes are expressed and 2) To identify a new role for SNORD115 and SNORD116 which may help explain the PWS condition or how other very small molecules that do not make false

Prevalence and aetiology of PWS low level mosaicism in UPD undetected by standard testing

Prader-Willi syndrome (PWS) is a severe neurodevelopmental disorder found in ~1 in 15,000 to 20,000 births. PWS phenotype caused by the loss of function of several genes located on chromosome 15. These genes are usually ‘switched on’ on the chromosome 15 that is inherited from the father and ‘switched off’ on the chromosome 15 inherited from the false

Recapitulating obesity and hyperphagia in novel adult-onset mouse models of Snord116 deletion

Although it is well established that deletion of SNORD116 contributes to PWS in humans, mice missing Snord116 don’t display hyperphagia and obesity. This makes it very difficult to study the biology of SNORD116 and test anti-obesity drugs. In a major breakthrough, Dr. Yeo’s group has shown that if Snord116 is deleted in adult mice, a percentage of false

The molecular mechanism of SNORD116 action and possible SNORD116 substitution strategies

The loss of two snoRNAs, SNORD115 and SNORD116, plays a central role in the development of Prader-Willi syndrome. However, the normal function of SNORD116 is still unclear, making it difficult to understand what goes wrong when SNORD116 is lost. Dr. Stamm’s group is exploring how SNORD116 influences other genes, and their preliminary studies false

Search Projects

Donate for PWS Research