Projects Archive - Foundation for Prader-Willi Research | Therapeutic Development

The molecular mechanism of SNORD116 action (year 2)

Abstract SNORD116 is a C/D box small nucleolar RNA that is critical for the etiology of PWS, as microdeletions encompassing only SNORD116 cause a PWS-like phenotype. The molecular functions of SNORD116 have been elusive, preventing therapy design. We showed that SNORD116 is not a typical snoRNA, as it associates with different proteins and has a false

Comufaces: The Perception of Communicative Faces by Infants with PWS (Year 2)

Neuropsychological studies have detailed several cognitive deficits in Prader-Willi Syndrome (PWS), among which the observation of altered social interactions, with notable difficulty in interpreting and responding to social information. The integration of the information from the face and the voice is important for our social communication as false

Systematic Investigation of Early Social Cognitive Processes and the Feasibility of Intervention

For Year 1, our project aims were: 1) to characterize the social, cognitive, and affective processes in preschoolers with PWS (by genetic subtype), in comparison to preschoolers with ASD and typically developing children, and 2) to pilot a remotely delivered parent education program to determine if it would be feasible and effective for families false

Neural mechanisms of oxytocin-enhanced infant feeding and social behavior development

This project uses infant mice to understand the mechanism of a promising treatment for PWS. Oxytocin (OXT) regulates feeding and social behavior. In mouse research and recent clinical trials with infants and young children, OXT seems to improve the core feeding and social behavior disturbances of PWS. In humans, OXT is effective when it is given false

Dissecting a novel brainstem feeding circuit in Prader-Willi syndrome

There is currently no cure for Prader-Willi syndrome (PWS). PWS is a complex and debilitating disorder that significantly impacts the lives of not only affected patients, but their families, as well. Recent work has revealed a genetic basis for PWS, and a number of the genes affected are known to have unique expression patterns throughout the false

Therapeutic Potential of Blocking Zinc Finger Protein 274 Binding to the PWS Locus

Our goal is to understand the molecular pathways disrupted in Prader-Willi syndrome (PWS) and to develop therapeutic interventions for this disorder. Through the biological process called genomic imprinting, the chromosome 15 that is inherited from the father has a set of genes that is switched on while the same set of genes on the chromosome 15 false

Evaluating factors that may affect the efficacy of intranasal oxytocin treatment in PWS

Recent studies with oxytocin treatment in PWS have yielded inconsistent results. Intranasal administration of oxytocin by the Toulouse group decreased disruptive behaviors in patients with PWS, but a recent randomized trial in Australia of adolescents and adults of intranasal oxytocin (IN-OT) found no effect on syndrome-specific behavior in false

Transcranial direct current stimulation, startle modulation and event-related potentials of the brain

Hyperphagia (extreme overeating) is the most significant factor contributing to obesity in Prader-Willi syndrome (PWS) and considered a cardinal feature. PWS is recognized as the most common syndromic cause of life-threating obesity, but no medications are currently available to decrease appetite or lessen obesity in PWS.

Proof of concept study of vagus nerve stimulation from an external device in PWS (year 2)

The hypothesis set out in our original application is that t-VNS given over time and following a protocol established for its use in epilepsy, will prevent the prolonged and debilitating temper outbursts and associated emotional dysregulation that characteristically affect people with PWS. We further propose that any improvements in behavior are false

Small molecule allosteric modulators of the melanocortin-4 receptor for the treatment of Prader-Willi syndrome

There is some data suggesting that one of the systems that regulates appetite and weight in the brain, the melanocortin-4 receptor pathway, may be disrupted in PWS.  This study will examine a new class of drugs targeting this pathway, in a mouse model of PWS.  The drugs will be tested alone and in combination with other drugs currently being false

Search Projects

Donate for PWS Research